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Turbulence in globally coupled maps
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The phenomenon of turbulence is investigated in the context of globally coupled maps. The local dynamics
is given by the Chatéanneville minimal map previously used in studies of spatiotemporal intermittency in
locally coupled map lattices. New features arise in the globally coupled system; for instance, the transition to
turbulence takes place discontinuously at some critical values of the parameters of the system. The critical
boundaries between different regimgaminar, turbulent, and fully turbulenof the system are calculated on
the parameter space. Windows of turbulence are present in some ranges of the coupling parameter. The system
also exhibits nontrivial collective behavior. A map for the instantaneous fraction of turbulent elements is
proposed. This map describes many of the observed properties of the sj81€083-651X96)00106-1

PACS numbe(s): 47.27—i, 05.45+b, 02.50-r

I. INTRODUCTION In this paper, we investigate the phenomenon of turbu-
lence in the context of globally coupled maps. The local
The transition to turbulence in confined systems and itslynamics we employ is the elementary map of Chetel
relation to the routes to chaos has been a subject of muddanneville [4], which has been shown to exhibit several
interest[1]. A very general scenario for the occurrence ofProperties of the transition to turbulence via spatiotemporal
turbulence is spatiotemporal intermittency, i.e., a sustainedntermittency on locally coupled map latticg$,8]. Our sys-
regime characterized by the coexistence of coherent-lamindgm of globally coupled Chatand Manneville maps pro-
and disordered-chaotic domains in space and t[me] vides a situation to compare the roles that local and global
There are numerous studies of this phenomenon, some of tfiteractions play on the occurrence of turbulence. Some dif-
most extensive of which have been on model dynamical sysferent features arise in this model; for instance, the onset of
tems such as coupled map lattig&ML) [2,4—§. The idea turbulence appears to take pladiscontinuouslyat critical
is that the ingredients of a CIM— a discrete space, discrete Values of the parameters of the system. The model is pre-
time system of interacting elements whose states vary corfented and its statistical properties are numerically explored
tinuously according to specific functions — are sufficient toOn its parameter space in Sec. Il. In Sec. Ill, a map for the
capture much of the phenomenology observed in complefistantaneous fraction of turbulent elements in the system is
spatiotemporal processes, in particular some relevant fe&@roposed. This map model describes much of the behavior
tures of spatiotemporal intermittency and turbulence. In thi®bserved in Sec. II. The results are discussed in Sec. IV.
respect, a CML can be viewed as a simplifying replacement

for partial differential e_quation_s of hydrodynam@]. The Il. GLOBALLY COUPLED MINIMAL MAPS
ons:et of tur_bulem_:e via spatlotemp_oral mtermltte_ncy has FOR TURBULENCE

mainly been investigated on CMLs with local, diffusive-type _

interactions on both low-dimensional Euclidean arrials7] We consider the globally coupled map system

and on fractal lattice§8]. These studies have permitted the
characterization of the transition to turbulence as a critical
phenomenon in one and two dimensions and on several frac- Xip1(i)=(1— 6)f(Xt(I))+ E fx())), (1)
tal dimensions with diverse local connectivities.

Recently, globally coupled elements have been a focus of
attention in physics and biologyl0-14, including systems where x(i) gives the state of the lattice elememt
such as Josephson junction arrays, charge density wavegés=1, ..., N= system size) at a discrete time stgpe is
multimode lasers, neural dynamics, ecological, and evolutiothe coupling parameter, arfdis a map describing the local
models. Globally coupled mag45] constitute a useful ap- dynamics. The instantaneous mean field of the system is de-
proach to the study of many processes on this kind of sysfined as
tems. Globally coupled maps can be regarded as an exten-
sion of a CML with diffusive coupling to infinite dimension, 1 N
or as a limiting case of a system with long range interactions. t:N E f(x(j)) 2
Spatial concepts lose meaning and only temporal properties =1
become relevant in globally coupled maps. These character-
istics allow for simpler, mean-field descriptions of the behav- While the choice of the local mapin Eq. (1) determines
ior of the system. the details of the transition to turbulence, it need only pos-

sess a few general properties to observe spatiotemporal in-
termittency. The map introduced by Chatad Manneville
*Electronic address: mcosenza@ula.ve [4] contains such minimal requirements,
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=(1—-|1-2x|), ifxe[0,]]

N =

f(x)= ) a

X, ifx>1,

with r>2. This map is chaotic as long &) remains in the
interval[ 0,1]; however, wherf(x)>1 the dynamics reaches
a fixed point in one iteration. The local variable can thus be 0.6 1
seen as a continuum of stable “laminar” fixed points
(x>1) adjacent to a chaotic repeller or “turbulent” phase (F)
(xe[0,1]). For a coupled system the laminar phase is meta-
stable, since sites in this state are stable to infinitesimal per-
turbations but possibly unstable to finite disturbances in-
duced by the coupling.

In diffusively coupled map lattices, for a large enough 0.2 .
coupling, the turbulent phase can propagate through the lat-
tice in time producing sustained states of spatiotemporal in-
termittency [4,8]. Here, we investigate the corresponding
phenomenon in the context of globally coupled maks. 0.24 0.26 0.28 0.3 0.32 0.34
()] using the local mag [Eqg. (3)]. This situation may be €
considered as spatiotemporal intermittency occurring on a
diffusively coupled system in a spatially high-dimensional
lattice, or as spatiotemporal intermittency in a limiting case
of long range interactions. Thus the notions of spatial pat-
terns and correlations characteristic of spatiotemporal inter- 08
mittency in CMLs with local connections are lost and only
temporal properties of the system become relevant. Above
some threshold in parameter spacee}, and starting from 0.6
random initial conditions, the globally coupled map system
relaxes to a statistically stationary chaotic regime where each
element displays intermittency between laminar and turbu-
lent phases. As on locally coupled map lattices, the transition
to this extended chaotic state can be monitored by the mean
fraction of turbulent sitegF), a quantity that acts as the
order parameter for the systddhl. We have calculatedF) 02 1
as a function of the coupling parameterfor several fixed
values ofr from a time average of the instantaneous turbu-

lent fractionF,, as . s s .
0.1 0.2 0.3 0.4 0.5

€

0.4 B

04 q

1 T
(Fy== 2 Fo. (@)
t=1 FIG. 1. Mean turbulent fractiodF) as a function of the cou-
pling parametere. The local parameter is fixed &) r=3; (b)

Typically 10" iterations were discarded before taking the, —5 6 The error bars indicate 1 standard deviations.

time average in Eq4) and was fixed at the value f0The
typical system size used in the calculations Was10*. We  lishing a well defined window of turbulence on the range
have found that increasing the lattice sizes does not apprée.,e.]. Figure 1b) shows that more than one of such win-
ciably affect the results presented in this paper. The charagtows of turbulence, separated by laminar gaps, can occur in
teristics of the system also persist for small lattice sizgs  globally coupled maps as the coupling is varied.
to N=100). As initial conditions, we use random cell values  Windows of spatiotemporal intermittency on a range of
equally distributed between the turbulent and the laminathe coupling parameter have also been observed in coupled
ranges. It is to be noticed that a minimum number of initially maps on fractal lattices with large enough connectivitgs
turbulent cells is always required to reach a sustained state & general, for CMLs with local interactions, the transition
turbulence. from a laminar regime to spatiotemporal intermitteriend
Figures 1a) and 1b) present plots ofF) versuse for two  vice versa, in the case of windows of turbulenbehaves in
different fixed values of. For small coupling, the system many aspects as a second order phase transition, character-
reaches a uniformly laminar state. The onset of turbulencézed by the scaling relatiokiF)~ (e—€.)?, where 8 is a
takes place discontinuously at a critical value of the couplingritical exponen{4,5,8). In contrast, the transition between
parametere.. The mean turbulent fractiofF) vanishes ata laminar states and turbulence in globally coupled maps ap-
larger value of the coupling, giving rise to a relaminarizationpears as a discontinuous jump in the quantfy, a feature
of the system; i.e., a second transition from turbulence to @associated to first order phase transitions. The absence of
uniform laminar state takes place at a vakfe>e., estab- spatial relations in globally coupled maps rules out the pos-
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FIG. 3. Phase diagram of the globally coupled map system. The

FIG. 2. Return magF,., vs F of the instantaneous turbulent igerent stationary regimes of the system are indicated on the pa-
fraction obtained from direct simulation of the globally coupled 3 meter plane. The numerically determined critical boundaries be-

Chat'eMannev_iIIe maps. The parameters are3, €=0.295; and  yeen laminar and turbulent states and between turbulent and fully

the system size i®N=1C°. The number of iterations shown is hylent regimes are shown with a thick line. The smo@kin)

10 curves correspond to the theoretical prediction of those same
boundaries; upper curve: theoretical laminar-turbulent boundary,

sibility of supporting small spatial domains of turbulent cells lower curve: theoretical turbulent fully turbulent boundd§ec.

which would be necessary for a continuous transition to turl!l)-

bulence.

The error bars shown on the mean turbulent frac{ilh  gime is observed. In this case, the coupling cannot compen-
in Figs. 1@ and Xb) correspond to the standard deviation sate the escape rate from the intefM@f] in the local maps.
(square root of the variangef the time series oF; at each  Both parameters and e were varied in 10° in order to
value ofe. With increasing system siZ¢, these fluctuations detect the regions of turbulence. Figure 3 shows the complex
turn out to decrease only up to some size, beyond which thegritical boundary for the onset of turbulence determined in
remain constant. This phenomenon is associated to a nothis way. The structure of the turbulent windows in param-
trivial collective behavior commonly observed in globally eter space is revealed in Fig. 3. The fine structure of this
coupled maps and which has been called “violation of thecritical boundary is actually more complex; there are several
law of large numbers'[16]: the variance of the temporal narrow windows of turbulence and laminar gaps at smaller
fluctuations of the mean fielfEq. (2)] does not scale as scales. Some of the complexity of the critical boundary be-
N~ for largeN, but it saturates at some constant value. Intween turbulent and laminar regimes has already been sug-
the present case, the large amplitudes of the standard devigested by less detailed calculations on diffusively coupled
tions observed in Fig. 1 reflect collective periodic states ofone-dimensional latticegs,6]. For parameter values inside
the system. For example, Fig. 2 shows the return map of ththe critical boundary, the globally coupled map system ex-
instantaneous turbulent fractidf,, ,; vs F, for parameter hibits sustained turbulence €QF)<1). The region where
valuesr =3 and €=0.295, after discarding the transients. full turbulence takes placgF)=1) is also shown in Fig. 3.
The instantaneous turbulent fraction displays an approximatin this fully turbulent region, the globally coupled system,
periodic behavior, with periodix. Other nontrivial collective  Eg. (1), uses only the regimee[0,1] of the local map, Eqg.
states can be observed at different parameter values of t{8). Thus the local dynamics is effectively a tent map with
system. The instantaneous turbulent fraction is a simpler staloper>2. The global coupling is capable of confining all
tistical description than the mean field and, in our case, ithe element,(i) to the interva[ 0,1], even though the local
already manifests a collective periodic behavior of the sysdynamics is repelling in this case. As found by Kan¢kd],
tem over long times, as shown in Fig. 2. Calculations ofa system of globally coupled tent maps witk:2 presents
return maps of the mean field of the system at parameteatollective behaviorgone- and two-band global attractprs
values giving turbulence should reveal more details on thand a turbulent phase on different regions of its parameter
nature of those collective behaviors, such as global periodiplane ¢,€). One may expect that a simple extrapolation of
attractors and possible quasiperiodic motions. the phase diagram iri7] should carry through this structure

We have calculated numerically the critical valugs  to the range >2, corresponding to the fully turbulent region
€. corresponding to boundaries of the windows of turbulencen Fig. 3. The laminar regime of the systei(=0) occurs
observed in the system as a functionrof There exists a for values €, €) outside the critical boundary. This boundary
maximum valuer ,,,=3.29 beyond which no turbulent re- signals the discontinuous transition between the two collec-
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tive states(laminar and turbulentin the phase diagram of o =1 if xp>r/2,
the system. Figure 3 also shows a theoretical critical bound- N )

ary for the onset of turbulence in globally coupled maps as ¢ =0 if  xp<l. ®)
well as a predicted boundary for full turbulence, both ob-

; s At
tained from a model presented in the next section. Forxme (11/2), we approximate the functiog, as

kg

: €)

4 Xm—1
IIl. MAP FOR THE TURBULENT FRACTION b =(1-Fy) =1

The existence of two distinct statéminar and turbu- where the positive exponegy is a parameter introduced to

leny in the local dynamics and the global coupling are sim-y,.e it account the nonhomogeneous distribution of cells
plifying features that permit the construction of a map for the-n the interval[ 1 /2]

mstgntaneoug “”b”'ef‘t _fracﬂon in the sygtem under consia- Similarly, a celli with x,(i)=<1/2 becomes laminar in the
eration. In this case, it is possible to estimate the instantg oyt j S
) ext iteration if
neous exchange of cell values between the two states in order
to compute the change of thg in one iteration. (1—e)rx(i)+eh>1, (10
Let ¢, (¢, ) be the fraction of cells that being laminar - , _
(turbuleny at timet will become turbulentlaminay at time ~ While the same transition for a cell with H(i)<1 oc-
t+ 1. Then, the change in the instantaneous turbulent fractioRt" if
from one iteration to the next is (1—e)[1—x,(i)]r + eh,> 1 (12)

AF=F1—F=¢  — ¢ . (5 therefore,¢; corresponds to the fraction of cells satisfying

. , . . . iti <x(i)<1l— ) i
A cell i that is laminar at timé becomes turbulent at time the conditionxp/r <X,(i)<1=Xm/r. Notice that

t+1if ¢ =0 if x,>r/2. (12
(1—e)x(i)+ eh,<1; (6)  Forx,<r/2, we assume the following form of the function
therefore,," is the fraction of cells satisfying the condition P )
1=<x,(i)<Xm, Where ¢t_:Ft(1_2Xr_m) 2' 13
1_ Eht
Xm=7 "¢ () where the quantity (% 2x,,/r) is the fraction of the turbu-

lent rangd 0,1] occupied by cells that become laminar in the
The quantityx,, is the maximum value that laminar cells next iteration. The positive exponek} takes into account
may have in order to become turbulent in the next iterationthe nonhomogeneous distribution of cells in the interval
Thus the fraction of the laminar rangé /2] occupied by [0,1].
cells making the transition to turbulence in the next iteration By using the above assumptions, the difference map Eg.
is (Xm—1)/(r/2—1). Notice that (5) can be written as

Xm— 1k 2Xm| <2
(1_,:0(”‘__) —Ft(l—Tm) if 1<xu<r/2 (19

1-F, if xp=r/2.

The casex,<1 (i.e., ¢; =0) describes transient turbulent turbulent and of the laminar cells, respectively. In particular,
regimes evolving towards a final laminar statg£0). In  the instantaneous mean-fidig of the turbulent cells fluctu-
the casex,=r/2 (i.e., ¢, =0 and ¢,'=1), the system ates for fixed values of ande. Whenh approaches the
reaches a fully turbulent regimé(=1) in one time step. value 1, the system tends to fall to the laminar state; thus the
To obtain the explicit dependence of the difference mapnaximum values ohy in parameter space are the relevant
Eq. (14) on the parametens and ¢, we need an expression ones for the transition to turbulence. From the numerical
for h,. The instantaneous mean-fi¢ldcan be approximated calculations, one can roughly approximétgandh, as
as the sum of two contributions

hr=0.48+ 1.0%, (16)
htth(r,ﬁ)Ft+hL(r,6)(1_Ft), (15)

where ht and h_ are the instantaneous mean fields of the h =1+0.1Qr—2). 17)
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FIG. 4. The mapAF, vs F, obtained from Eq(14) plotted for €
five labeled values oé and fixed valug =2.3. The critical values
for the onset of turbulence ake=0.0145 ande,=0.488. FIG. 5. Numerically calculated mean turbulent fractié?) as a

function of the couplinge for fixed r=2.3. The system becomes
fully turbulent (F)=1) betweene=0.31 ande=0.39. The error
bars indicate=1 standard deviations. The stable fixed pdiyt
(thick line) and the unstable fixed poifft; (thin line) of the map
Eq. (14) are also shown as functions effor r =2.3.

The expression foh; reflects the fact that the range of al-
lowed values in the turbulent phase does not depend,on
while an increase of the coupling enhances the flow of
laminar cells across the phase boundeasyl, producing an

inc.:reml?gt OOf ;c]he ﬁopuk:ati(én .Of tu;bulent celfls ”With culations. The mean turbulent fractidi) obtained from
X(i)=> 2. On the other hand, since the range of a OWeljirect simulations of the globally coupled map system with
values in the laminar phase is/g—1), one could expect | _; 3 s 5150 shown as a function efin Fig. 5. The stable

h.L to increase witlr. The above approximations are suffi- 4. qq pointF, obtained from the map model agrees well with
cient for the construction of a mapping of the turbulent 1‘rac-,[he direct calculation

tion, Eq.(14), that describes many relevant properties of the The valuese, and €. corresponding to each value of

globally coupled ChatManneville maps. . . .
Figure 4 shows\F, vs F, obtained from Eq(14) for five %egree tgfarzc;lig:jzré::tv_l\_lﬁgnClIJ?mlgre;r;ndd;l;:l))tgg?;i;iglmes
different values ofe and the fixed value =2.3. The expo- f tt? del P h L Ei \5‘3’2 B e/ ith th
nentsk,;= 0.8 andk,= 1.2 were chosen in all the calculations rom the model are snown In Fig. <. By comparing wi €
since they optimize the agreement of our model with thecrltlcal boundary resqltmg from direct calculatlons, one can
results from the globally coupled map system, but the chars°® that the model given by E(14) provides a qualitative

acteristics of the map model persist for a range of values Ogescrlpnon of the transition to turbulence in the globally

= coupled map system. For values rottlose to 2 and small
the parameterk,; andk,. The real roots 4F,=0) of Eq. X .
(14) give the fixed pointgstationary valuesof the turbulent €’ the model reproduc_es quite well the critical boundary. The
fractionF;. The laminar stat&;=0 is always a stable fixed map model also pred_|cts ihe existence of a boundgry for the
point, Adtaitionally two othetr fixed pointsF, and F, fully turbulent region in the parameter plane. On this bound-

(F1<F,), occur in the intervak e[ e, €.], as shown in Fig. ary, Xm=r/2 andhy=hr; thus from Eq.(7), we get

4. The fixed pointF; is unstable and it defines a critical 2

value of the instantaneous turbulent fraction bellow which r:r[l—e(0.48+ 1.05%¢)]. (18
the system invariably falls to the the stable laminar state €

F;=0. For values of the instantaneous turbulent fraction-l-hiS curve is also plotted in Fig. 2. However the simple
above this critical valu¢; , the system evolves towards the ., 4 presented here fails to reproduce the complex struc-

upper fixed poin€,, which is stable. As shown in Fig. 4 and y,re of the critical boundary and it predicts a lower value for
in Fig. 5, the two nonvanishing fixed points coincide at the;na maximum value of for which turbulence can be sus-
critical values of the coupling, and e, corresponding t0  tzined.

tangent bifurcations of the map E(@.4). In Fig. 5 the fixed
points of the map Eq.14) are plotted as a function ef, for
fixedr =2.3. Figure 5 clearly shows that at the critical values
of the couplinge. and €, the transition between laminar Some of the features associated with the occurrence of
(Fy=0) and turbulent F,=F,) regimes predicted by the turbulence in globally coupled systems have been explored
map Eq.(14) is discontinuous, as seen in the numerical cal-in this paper. We have found that the onset of turbulence

IV. CONCLUSIONS



53 TURBULENCE IN GLOBALLY COUPLED MAPS 6037

occurs discontinuously at critical values of the parameters, asoupled ChatéManneville maps, such as: the existence of
in first order phase transitiong. Previous studies of diffusivelythe critical values of the coupling. and e, and the critical
coupled map lattices with Chatdanneville local dynamics boundary in parameter space for the transition to turbulence;
have shown that the transition to turbulence in those cases ife discontinuos character of the transition; the existence of
similar to a second order phase transition. anr . the presence of a threshold for the initial turbulent
We have made detailed calculations that reveal the comfraction in order to develop sustained turbulence; and the
plexity of the critical boundaries separating the different re-existence of a fully turbulent regime and its boundary in the
gimes of the system. Multiple windows of turbulence andparameter plane.
relaminarization of the system have been observed as the The global map cannot describe the complex structure of
coupling parameter is varied. the critical boundary and it predicts a lower valuergf,,.
Nontrivial collective behavior arises within the turbulent The theoretical critical boundary becomes less accurate, with
region in the parameter space of the globally coupled systemespect to the direct simulations, for large values aind
In fact, the return map of the instantaneous fraction of tur-e, However, map models for global quantities, such as the
bulent cells, which is a simple two-state statistical descripmean field or other statistical properties of the system, con-
tion of the system, reflects this collective temporal Organiza-stitute an useful approach for the understanding of the col-
tion. The appearance of nontrivial collective behaviors in|ective dynamics of Coup|ed map lattices. In particu|ar, g|0_
map lattices with local or global couplings is a subject ofpal maps analogous to E€L4) could model the behavior of
current research. Much effort has been devoted to eStab”Sf@ther g|oba||y Coup|ed Systems whose local dynamics con-
ing the necessary conditions for the emergence of this behayains two distinct states, as in bistable maps.
ior. Periodic collective states have been found in globally
coupled maps belonging to some universality clésst,
quadratic, or circle map$17,18. The observation of collec- ACKNOWLEDGMENTS
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