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The phenomenon of turbulence is investigated in the context of globally coupled maps. The local dynamics
is given by the Chate´-Manneville minimal map previously used in studies of spatiotemporal intermittency in
locally coupled map lattices. New features arise in the globally coupled system; for instance, the transition to
turbulence takes place discontinuously at some critical values of the parameters of the system. The critical
boundaries between different regimes~laminar, turbulent, and fully turbulent! of the system are calculated on
the parameter space. Windows of turbulence are present in some ranges of the coupling parameter. The system
also exhibits nontrivial collective behavior. A map for the instantaneous fraction of turbulent elements is
proposed. This map describes many of the observed properties of the system.@S1063-651X~96!00106-7#

PACS number~s!: 47.27.2i, 05.45.1b, 02.50.2r

I. INTRODUCTION

The transition to turbulence in confined systems and its
relation to the routes to chaos has been a subject of much
interest@1#. A very general scenario for the occurrence of
turbulence is spatiotemporal intermittency, i.e., a sustained
regime characterized by the coexistence of coherent-laminar
and disordered-chaotic domains in space and time@2,3#.
There are numerous studies of this phenomenon, some of the
most extensive of which have been on model dynamical sys-
tems such as coupled map lattices~CML! @2,4–8#. The idea
is that the ingredients of a CML — a discrete space, discrete
time system of interacting elements whose states vary con-
tinuously according to specific functions — are sufficient to
capture much of the phenomenology observed in complex
spatiotemporal processes, in particular some relevant fea-
tures of spatiotemporal intermittency and turbulence. In this
respect, a CML can be viewed as a simplifying replacement
for partial differential equations of hydrodynamics@9#. The
onset of turbulence via spatiotemporal intermittency has
mainly been investigated on CMLs with local, diffusive-type
interactions on both low-dimensional Euclidean arrays@4–7#
and on fractal lattices@8#. These studies have permitted the
characterization of the transition to turbulence as a critical
phenomenon in one and two dimensions and on several frac-
tal dimensions with diverse local connectivities.

Recently, globally coupled elements have been a focus of
attention in physics and biology@10–14#, including systems
such as Josephson junction arrays, charge density waves,
multimode lasers, neural dynamics, ecological, and evolution
models. Globally coupled maps@15# constitute a useful ap-
proach to the study of many processes on this kind of sys-
tems. Globally coupled maps can be regarded as an exten-
sion of a CML with diffusive coupling to infinite dimension,
or as a limiting case of a system with long range interactions.
Spatial concepts lose meaning and only temporal properties
become relevant in globally coupled maps. These character-
istics allow for simpler, mean-field descriptions of the behav-
ior of the system.

In this paper, we investigate the phenomenon of turbu-
lence in the context of globally coupled maps. The local
dynamics we employ is the elementary map of Chate´ and
Manneville @4#, which has been shown to exhibit several
properties of the transition to turbulence via spatiotemporal
intermittency on locally coupled map lattices@4,8#. Our sys-
tem of globally coupled Chate´ and Manneville maps pro-
vides a situation to compare the roles that local and global
interactions play on the occurrence of turbulence. Some dif-
ferent features arise in this model; for instance, the onset of
turbulence appears to take placediscontinuouslyat critical
values of the parameters of the system. The model is pre-
sented and its statistical properties are numerically explored
on its parameter space in Sec. II. In Sec. III, a map for the
instantaneous fraction of turbulent elements in the system is
proposed. This map model describes much of the behavior
observed in Sec. II. The results are discussed in Sec. IV.

II. GLOBALLY COUPLED MINIMAL MAPS
FOR TURBULENCE

We consider the globally coupled map system

xt11~ i !5~12e! f „xt~ i !…1
e

N (
j51

N

f „xt~ j !…, ~1!

where xt( i ) gives the state of the lattice elementi
( i51, . . . ,,N5 system size) at a discrete time stept, e is
the coupling parameter, andf is a map describing the local
dynamics. The instantaneous mean field of the system is de-
fined as

ht5
1

N (
j51

N

f „xt~ j !…. ~2!

While the choice of the local mapf in Eq. ~1! determines
the details of the transition to turbulence, it need only pos-
sess a few general properties to observe spatiotemporal in-
termittency. The map introduced by Chate´ and Manneville
@4# contains such minimal requirements,*Electronic address: mcosenza@ula.ve
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x, if x.1,

~3!

with r.2. This map is chaotic as long asf (x) remains in the
interval @0,1#; however, whenf (x).1 the dynamics reaches
a fixed point in one iteration. The local variable can thus be
seen as a continuum of stable ‘‘laminar’’ fixed points
(x.1) adjacent to a chaotic repeller or ‘‘turbulent’’ phase
(xP@0,1#). For a coupled system the laminar phase is meta-
stable, since sites in this state are stable to infinitesimal per-
turbations but possibly unstable to finite disturbances in-
duced by the coupling.

In diffusively coupled map lattices, for a large enough
coupling, the turbulent phase can propagate through the lat-
tice in time producing sustained states of spatiotemporal in-
termittency @4,8#. Here, we investigate the corresponding
phenomenon in the context of globally coupled maps@Eq.
~1!# using the local mapf @Eq. ~3!#. This situation may be
considered as spatiotemporal intermittency occurring on a
diffusively coupled system in a spatially high-dimensional
lattice, or as spatiotemporal intermittency in a limiting case
of long range interactions. Thus the notions of spatial pat-
terns and correlations characteristic of spatiotemporal inter-
mittency in CMLs with local connections are lost and only
temporal properties of the system become relevant. Above
some threshold in parameter space (r ,e), and starting from
random initial conditions, the globally coupled map system
relaxes to a statistically stationary chaotic regime where each
element displays intermittency between laminar and turbu-
lent phases. As on locally coupled map lattices, the transition
to this extended chaotic state can be monitored by the mean
fraction of turbulent siteŝF&, a quantity that acts as the
order parameter for the system@4#. We have calculated̂F&
as a function of the coupling parametere for several fixed
values ofr from a time average of the instantaneous turbu-
lent fractionFt , as

^F&5
1

t (
t51

t

Ft . ~4!

Typically 104 iterations were discarded before taking the
time average in Eq.~4! andt was fixed at the value 104. The
typical system size used in the calculations wasN5104. We
have found that increasing the lattice sizes does not appre-
ciably affect the results presented in this paper. The charac-
teristics of the system also persist for small lattice sizes~up
to N5100). As initial conditions, we use random cell values
equally distributed between the turbulent and the laminar
ranges. It is to be noticed that a minimum number of initially
turbulent cells is always required to reach a sustained state of
turbulence.

Figures 1~a! and 1~b! present plots of̂F& versuse for two
different fixed values ofr . For small coupling, the system
reaches a uniformly laminar state. The onset of turbulence
takes place discontinuously at a critical value of the coupling
parameter,ec . The mean turbulent fraction̂F& vanishes at a
larger value of the coupling, giving rise to a relaminarization
of the system; i.e., a second transition from turbulence to a
uniform laminar state takes place at a valueec8.ec , estab-

lishing a well defined window of turbulence on the range
@ec ,ec8#. Figure 1~b! shows that more than one of such win-
dows of turbulence, separated by laminar gaps, can occur in
globally coupled maps as the coupling is varied.

Windows of spatiotemporal intermittency on a range of
the coupling parameter have also been observed in coupled
maps on fractal lattices with large enough connectivities@8#.
In general, for CMLs with local interactions, the transition
from a laminar regime to spatiotemporal intermittency~and
vice versa, in the case of windows of turbulence! behaves in
many aspects as a second order phase transition, character-
ized by the scaling relation̂F&;(e2ec)

b, whereb is a
critical exponent@4,5,8#. In contrast, the transition between
laminar states and turbulence in globally coupled maps ap-
pears as a discontinuous jump in the quantity^F&, a feature
associated to first order phase transitions. The absence of
spatial relations in globally coupled maps rules out the pos-

FIG. 1. Mean turbulent fraction̂F& as a function of the cou-
pling parametere. The local parameter is fixed at~a! r53; ~b!
r52.6. The error bars indicate61 standard deviations.
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sibility of supporting small spatial domains of turbulent cells
which would be necessary for a continuous transition to tur-
bulence.

The error bars shown on the mean turbulent fraction^F&
in Figs. 1~a! and 1~b! correspond to the standard deviation
~square root of the variance! of the time series ofFt at each
value ofe. With increasing system sizeN, these fluctuations
turn out to decrease only up to some size, beyond which they
remain constant. This phenomenon is associated to a non-
trivial collective behavior commonly observed in globally
coupled maps and which has been called ‘‘violation of the
law of large numbers’’@16#: the variance of the temporal
fluctuations of the mean field@Eq. ~2!# does not scale as
N21 for largeN, but it saturates at some constant value. In
the present case, the large amplitudes of the standard devia-
tions observed in Fig. 1 reflect collective periodic states of
the system. For example, Fig. 2 shows the return map of the
instantaneous turbulent fractionFt11 vs Ft for parameter
values r53 and e50.295, after discarding the transients.
The instantaneous turbulent fraction displays an approximate
periodic behavior, with periodsix. Other nontrivial collective
states can be observed at different parameter values of the
system. The instantaneous turbulent fraction is a simpler sta-
tistical description than the mean field and, in our case, it
already manifests a collective periodic behavior of the sys-
tem over long times, as shown in Fig. 2. Calculations of
return maps of the mean field of the system at parameter
values giving turbulence should reveal more details on the
nature of those collective behaviors, such as global periodic
attractors and possible quasiperiodic motions.

We have calculated numerically the critical valuesec ,
ec8 corresponding to boundaries of the windows of turbulence
observed in the system as a function ofr . There exists a
maximum valuermax.3.29 beyond which no turbulent re-

gime is observed. In this case, the coupling cannot compen-
sate the escape rate from the interval@0,1# in the local maps.
Both parametersr and e were varied in 1023 in order to
detect the regions of turbulence. Figure 3 shows the complex
critical boundary for the onset of turbulence determined in
this way. The structure of the turbulent windows in param-
eter space is revealed in Fig. 3. The fine structure of this
critical boundary is actually more complex; there are several
narrow windows of turbulence and laminar gaps at smaller
scales. Some of the complexity of the critical boundary be-
tween turbulent and laminar regimes has already been sug-
gested by less detailed calculations on diffusively coupled
one-dimensional lattices@5,6#. For parameter values inside
the critical boundary, the globally coupled map system ex-
hibits sustained turbulence (0,^F&<1). The region where
full turbulence takes place (^F&51) is also shown in Fig. 3.
In this fully turbulent region, the globally coupled system,
Eq. ~1!, uses only the regimexP@0,1# of the local map, Eq.
~3!. Thus the local dynamics is effectively a tent map with
slope r.2. The global coupling is capable of confining all
the elementsxt( i ) to the interval@0,1#, even though the local
dynamics is repelling in this case. As found by Kaneko@17#,
a system of globally coupled tent maps withr,2 presents
collective behaviors~one- and two-band global attractors!
and a turbulent phase on different regions of its parameter
plane (r ,e). One may expect that a simple extrapolation of
the phase diagram in@17# should carry through this structure
to the ranger.2, corresponding to the fully turbulent region
in Fig. 3. The laminar regime of the system (^F&50) occurs
for values (r ,e) outside the critical boundary. This boundary
signals the discontinuous transition between the two collec-

FIG. 2. Return mapFt11 vs Ft of the instantaneous turbulent
fraction obtained from direct simulation of the globally coupled
Chaté-Manneville maps. The parameters arer53, e50.295; and
the system size isN5105. The number of iterations shown is
104.

FIG. 3. Phase diagram of the globally coupled map system. The
different stationary regimes of the system are indicated on the pa-
rameter plane. The numerically determined critical boundaries be-
tween laminar and turbulent states and between turbulent and fully
turbulent regimes are shown with a thick line. The smooth~thin!
curves correspond to the theoretical prediction of those same
boundaries; upper curve: theoretical laminar-turbulent boundary,
lower curve: theoretical turbulent fully turbulent boundary~Sec.
III !.
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tive states~laminar and turbulent! in the phase diagram of
the system. Figure 3 also shows a theoretical critical bound-
ary for the onset of turbulence in globally coupled maps as
well as a predicted boundary for full turbulence, both ob-
tained from a model presented in the next section.

III. MAP FOR THE TURBULENT FRACTION

The existence of two distinct states~laminar and turbu-
lent! in the local dynamics and the global coupling are sim-
plifying features that permit the construction of a map for the
instantaneous turbulent fraction in the system under consid-
eration. In this case, it is possible to estimate the instanta-
neous exchange of cell values between the two states in order
to compute the change of theFt in one iteration.

Let f t
1 (f t

2) be the fraction of cells that being laminar
~turbulent! at time t will become turbulent~laminar! at time
t11. Then, the change in the instantaneous turbulent fraction
from one iteration to the next is

DFt[Ft112Ft5f t
12f t

2 . ~5!

A cell i that is laminar at timet becomes turbulent at time
t11 if

~12e!xt~ i !1eht,1; ~6!

therefore,f t
1 is the fraction of cells satisfying the condition

1<xt( i ),xm , where

xm5
12eht
12e

. ~7!

The quantityxm is the maximum value that laminar cells
may have in order to become turbulent in the next iteration.
Thus the fraction of the laminar range@1,r /2# occupied by
cells making the transition to turbulence in the next iteration
is (xm21)/(r /221). Notice that

f t
151 if xm.r /2,

f t
150 if xm,1. ~8!

For xmP(1,r /2), we approximate the functionf t
1 as

f t
15~12Ft!S xm21

r /221D
k1

, ~9!

where the positive exponentk1 is a parameter introduced to
take into account the nonhomogeneous distribution of cells
in the interval@1,r /2#.

Similarly, a celli with xt( i )<1/2 becomes laminar in the
next iteration if

~12e!rxt~ i !1eht.1, ~10!

while the same transition for a cell with 1/2,xt( i ),1 oc-
curs if

~12e!@12xt~ i !#r1eht.1; ~11!

therefore,f t
2 corresponds to the fraction of cells satisfying

the conditionxm /r,xt( i ),12xm /r . Notice that

f t
250 if xm.r /2. ~12!

For xm,r /2, we assume the following form of the function
f t

2 ,

f t
25FtS 122

xm
r D k2, ~13!

where the quantity (122xm /r ) is the fraction of the turbu-
lent range@0,1# occupied by cells that become laminar in the
next iteration. The positive exponentk2 takes into account
the nonhomogeneous distribution of cells in the interval
@0,1#.

By using the above assumptions, the difference map Eq.
~5! can be written as

DFt55
2FtS 12

2xm
r D k2 if xm<1

~12Ft!S xm21

r /221D
k1

2FtS 12
2xm
r D k2 if 1,xm,r /2

12Ft if xm>r /2.

~14!

The casexm<1 ~i.e., f t
150) describes transient turbulent

regimes evolving towards a final laminar state (Ft50). In
the casexm>r /2 ~i.e., f t

250 and f t
151), the system

reaches a fully turbulent regime (Ft51) in one time step.
To obtain the explicit dependence of the difference map

Eq. ~14! on the parametersr ande, we need an expression
for ht . The instantaneous mean-fieldht can be approximated
as the sum of two contributions

ht5hT~r ,e!Ft1hL~r ,e!~12Ft!, ~15!

wherehT and hL are the instantaneous mean fields of the

turbulent and of the laminar cells, respectively. In particular,
the instantaneous mean-fieldhT of the turbulent cells fluctu-
ates for fixed values ofr and e. WhenhT approaches the
value 1, the system tends to fall to the laminar state; thus the
maximum values ofhT in parameter space are the relevant
ones for the transition to turbulence. From the numerical
calculations, one can roughly approximatehT andhL as

hT.0.4811.05e, ~16!

hL.110.10~r22!. ~17!
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The expression forhT reflects the fact that the range of al-
lowed values in the turbulent phase does not depend onr ,
while an increase of the couplinge enhances the flow of
laminar cells across the phase boundaryx51, producing an
increment of the population of turbulent cells with
x( i ).1/2. On the other hand, since the range of allowed
values in the laminar phase is (r /221), one could expect
hL to increase withr . The above approximations are suffi-
cient for the construction of a mapping of the turbulent frac-
tion, Eq.~14!, that describes many relevant properties of the
globally coupled Chate´-Manneville maps.

Figure 4 showsDFt vsFt obtained from Eq.~14! for five
different values ofe and the fixed valuer52.3. The expo-
nentsk150.8 andk251.2 were chosen in all the calculations
since they optimize the agreement of our model with the
results from the globally coupled map system, but the char-
acteristics of the map model persist for a range of values of
the parametersk1 and k2 . The real roots (DFt50) of Eq.
~14! give the fixed points~stationary values! of the turbulent
fractionFt . The laminar stateFt50 is always a stable fixed
point. Additionally, two other fixed points,F1 and F2

(F1,F2), occur in the intervaleP@ec ,ec8#, as shown in Fig.
4. The fixed pointF1 is unstable and it defines a critical
value of the instantaneous turbulent fraction bellow which
the system invariably falls to the the stable laminar state
Ft50. For values of the instantaneous turbulent fraction
above this critical valueF1 , the system evolves towards the
upper fixed pointF2 , which is stable. As shown in Fig. 4 and
in Fig. 5, the two nonvanishing fixed points coincide at the
critical values of the couplingec and ec8 corresponding to
tangent bifurcations of the map Eq.~14!. In Fig. 5 the fixed
points of the map Eq.~14! are plotted as a function ofe, for
fixed r52.3. Figure 5 clearly shows that at the critical values
of the couplingec and ec8 the transition between laminar
(Ft50) and turbulent (Ft5F2) regimes predicted by the
map Eq.~14! is discontinuous, as seen in the numerical cal-

culations. The mean turbulent fraction^F& obtained from
direct simulations of the globally coupled map system with
r52.3 is also shown as a function ofe in Fig. 5. The stable
fixed pointF2 obtained from the map model agrees well with
the direct calculation.

The valuesec and ec8 corresponding to each value ofr
define the boundary between laminar and turbulent regimes
in the parameter space. The curvesec(r ) andec8(r ) obtained
from the model are shown in Fig. 2. By comparing with the
critical boundary resulting from direct calculations, one can
see that the model given by Eq.~14! provides a qualitative
description of the transition to turbulence in the globally
coupled map system. For values ofr close to 2 and small
e, the model reproduces quite well the critical boundary. The
map model also predicts the existence of a boundary for the
fully turbulent region in the parameter plane. On this bound-
ary, xm5r /2 andht5hT ; thus from Eq.~7!, we get

r.
2

12e
@12e~0.4811.05e!#. ~18!

This curve is also plotted in Fig. 2. However the simple
model presented here fails to reproduce the complex struc-
ture of the critical boundary and it predicts a lower value for
the maximum value ofr for which turbulence can be sus-
tained.

IV. CONCLUSIONS

Some of the features associated with the occurrence of
turbulence in globally coupled systems have been explored
in this paper. We have found that the onset of turbulence

FIG. 4. The mapDFt vs Ft obtained from Eq.~14! plotted for
five labeled values ofe and fixed valuer52.3. The critical values
for the onset of turbulence areec50.0145 andec850.488. FIG. 5. Numerically calculated mean turbulent fraction^F& as a

function of the couplinge for fixed r52.3. The system becomes
fully turbulent (̂ F&51) betweene.0.31 ande.0.39. The error
bars indicate61 standard deviations. The stable fixed pointF2

~thick line! and the unstable fixed pointF1 ~thin line! of the map
Eq. ~14! are also shown as functions ofe for r52.3.
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occurs discontinuously at critical values of the parameters, as
in first order phase transitions. Previous studies of diffusively
coupled map lattices with Chate´-Manneville local dynamics
have shown that the transition to turbulence in those cases is
similar to a second order phase transition.

We have made detailed calculations that reveal the com-
plexity of the critical boundaries separating the different re-
gimes of the system. Multiple windows of turbulence and
relaminarization of the system have been observed as the
coupling parameter is varied.

Nontrivial collective behavior arises within the turbulent
region in the parameter space of the globally coupled system.
In fact, the return map of the instantaneous fraction of tur-
bulent cells, which is a simple two-state statistical descrip-
tion of the system, reflects this collective temporal organiza-
tion. The appearance of nontrivial collective behaviors in
map lattices with local or global couplings is a subject of
current research. Much effort has been devoted to establish-
ing the necessary conditions for the emergence of this behav-
ior. Periodic collective states have been found in globally
coupled maps belonging to some universality class~tent,
quadratic, or circle maps! @17,18#. The observation of collec-
tive periodic behavior in the present system, where the local
dynamics has very specific characteristics, suggests that this
kind of collective behavior should be a rather common phe-
nomenon in deterministic systems of coupled chaotic ele-
ments.

The proposed map for the instantaneous turbulent fraction
explains many of the observed aspects of the globally

coupled Chate´-Manneville maps, such as: the existence of
the critical values of the couplingec andec8 and the critical
boundary in parameter space for the transition to turbulence;
the discontinuos character of the transition; the existence of
an rmax; the presence of a threshold for the initial turbulent
fraction in order to develop sustained turbulence; and the
existence of a fully turbulent regime and its boundary in the
parameter plane.

The global map cannot describe the complex structure of
the critical boundary and it predicts a lower value ofrmax.
The theoretical critical boundary becomes less accurate, with
respect to the direct simulations, for large values ofr and
e. However, map models for global quantities, such as the
mean field or other statistical properties of the system, con-
stitute an useful approach for the understanding of the col-
lective dynamics of coupled map lattices. In particular, glo-
bal maps analogous to Eq.~14! could model the behavior of
other globally coupled systems whose local dynamics con-
tains two distinct states, as in bistable maps.
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@9# H. Chatéand P. Manneville, Phys. Rev. Lett.58, 112 ~1987!.

@10# P. Hadley and K. Wiesenfeld, Phys. Rev. Lett.62, 1335
~1989!.

@11# K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Phys.
Rev. Lett.65, 1749~1990!.

@12# S. H. Strogatz, C. M. Marcus, R. M. Westervelt, and R. E.
Mirollo, Physica D36, 23 ~1989!.

@13# N. Nakagawa and Y. Kuramoto, Physica D75, 74 ~1994!.
@14# K. Kaneko, Physica D75, 55 ~1994!; 77, 456 ~1994!.
@15# K. Kaneko, Physica D41, 137 ~1990!.
@16# K. Kaneko, Phys. Rev. Lett.65, 1391~1990!.
@17# K. Kaneko, Physica D55, 368 ~1992!.
@18# K. Kaneko, Physica D86, 158 ~1995!.

53 6037TURBULENCE IN GLOBALLY COUPLED MAPS


